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CHAPTER I. INTRODUCTION 

The transition metal oxides that crystallize as 

perovskites form a family of isostructural compounds remark­

able for the profusion of intriguing properties they display. 

SrTiOg is an insulator which when properly doped becomes a 

superconductor, and its cubic-to-tetragonal structural trans­

formation is the classical example of a displacive phase 

transition. BaTiO^ is an insulator which at sufficiently low 

temperature becomes ferroelectric. LaPeO^ is an anti-

ferromagnetic insulator, GdCoO^ and LaRhO^ are semiconductors, 

and LaTiOg and LaNiO^ are metallic. 

A survey of the more than fifty known members of this 

family (not counting all the ones with rare-earth elements) 

has been made by Goodenough (1). His concern was to 

correlate the change from collective to localized d electron 

behavior with the row in the periodic table, the formal 

charge, and the maximum unpaired spin of the transition metal 

atom. In making this correlation he introduced a phenomeno-

logical parameter b, a measure of the strength of the 

interaction between the d orbitals of the transition metal 

atom and the orbitals of its nearest neighbors. Those oxides 

with a value for b greater than the critical value b^ have 

collective electronic states, while those with a value 

smaller than b„ have localized electronic states. He then 
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divided the metallic oxides into two classes according to the 

origin of their large value for b. Those with strong inter­

actions directly between transition metal atoms, due to the 

short distance between them, belong to Class I, and those 

with strong interactions between the transition metal and 

oxygen atoms, due to large covalent mixing of the metal d 

and oxygen p orbitals, belong to Class II. Goodenough's 

suggestion that metallic conductivity in oxides could come 

from considerable oxygen covalency ran counter to the then 

prevailing ionic ideas about oxides that were consonant with 

crystal field theory. Cubic sodium tungsten bronze is one 

of the Class II oxides. 

The tungsten bronzes add to the diversity of the 

transition metal oxides the dimension of nonstoichiometry. 

The opportunity they provide to measure or predict properties 

as a function of composition has made them model systems for 

study of the solid state. , The sodium tungsten bronzes 

exhibit a continuous sequence of phases that covers the entire 

composition range from 0 to 1 sodium atom per unit cell. 

They have the widest range over which the cubic phase is 

stable, and this range can be increased by more than a half 

when metastable crystals with cubic symmetry are included. 

Tungsten trioxide is monoclinic, and as sodium is added the 

crystalline symmetry becomes higher, suggesting that the 

presence of sodium stabilizes the cubic structure. At high 
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sodium concentrations the conductivity is comparable to that 

of copper, but the dependence of transport properties on 

composition cannot be explained by the free-electron approxi­

mation. There is a metal-semiconductor transition, and this 

transition is accompanied by an enhancement of the critical 

temperature for superconductivity. These properties, taken 

from among the experimental results that are discussed more 

fully in the next chapter, are some of the reasons why the 

sodium tungsten bronzes have been of interest. 

Explanation of the metallic properties of the sodium 

tungsten bronzes has provoked considerable controversy. The 

main point of contention has concerned which atomic orbitals 

constitute the conduction band. At least five models have 

been proposed. These have involved the tungsten 6s states 

(2), sodium 3p states (3), tungsten 5d (t^^) states (4), 

sodium states (5), and a covalent admixture of oxygen 2p^ 

and tungsten 5d (tg^) states (6) in the conduction process. 

The last model was proposed by Goodenough (6), who 

constructed a qualitative energy band scheme applicable to 

the cubic tungsten bronzes. The method he used was the one 

used to construct the orbital correlation diagrams of 

molecular orbital theory. In taking this approach, the 

energy bands of a crystal are thought of as if they originated 

from the discrete levels of a molecular cluster. This cluster 

has the full point group symmetry of the crystal considered. 
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and is taken to be the constituent element of the crystal's 

structure. The interaction between those clusters that 

compose a crystal breaks the degeneracy of their energy levels 

and spreads them out to form bands. A qualitative band 

structure for a cubic tungsten bronze crystal can then be 

inferred from the electronic structure of an octahedral WOg 

molecule. 

Features of the electronic structures of the cubic 

tungsten bronzes have been inferred from these qualitative 

considerations of Goodenough (6), the tight-binding models of 

Honig et aJ^. (7)j and the ReO^j SrTiO^j KTaO^j and KMoO^ band 

calculations of Mattheiss (8-10). Questions remain concerning 

the details of these band structures, the applicability of 

the rigid band model when x<l, and the participation of the 

metal atom added to the WO^ lattice in chemical bonding and 

physical properties. 

To address these questions directly and to help put 

aside some further speculation, two band structures were 

calculated at the outset of this study. These were for the 

two cubic crystals which would, in the absence of structural 

transformation, lie at each end of the concentration range 

for the sodium tungsten bronzes: DWO^ and NaWO^ (• denotes a 

vacancy at a Na site). Differences between the results of 

these two calculations were expected to indicate those 

features of the electronic structure of cubic Na WO, which 
X j 
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are sensitive to changes in Na concentration. A third band 

structure was calculated, one for WO^ which did not give the 

vacancies special treatment, in order to determine the 

influence of the interstitial potential on the band structure. 

Prom the energy bands of NaWO^ the density of states and 

Fermi surface were calculated, and from the wavefunction 

character of the electronic states were calculated the s, p, 

and d contributions from each atomic site to the NaWO^ 

density of states. In making an angular momentum decompo­

sition of the density of states, the calculations have been 

carried through to the first point of contact between the 

physics and the chemistry of sodium tungsten bronze. The 

calculations performed are complete in that they begin at 

first principles and end at comparison with experimental 

results. The calculations themselves, their interpretation, 

and their comparison with experimental data are the outcomes 

of this study. 
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CHAPTER II. A REVIEW OF EXPERIMENTAL RESULTS 

Bronzes (11) are nonstoichiometrlc, ternary metal oxides 

with the chemical formula M T 0 . T Is a transition element, X y z 

T O is its highest binary oxide, and M is another'metallic y z 

element whose concentration x may vary over a range that falls 

within the limits x=0 and x=l. These compounds character­

istically pass through a sequence of solid phases as x 

changes, and these phases may be homogeneous over definite 

and sometimes wide ranges of M concentrations. They often 

appear intensely colored, possess metallic lustre as 

crystals, are very inert chemically, and may exhibit high 

conductivity. Bronzes can be prepared by vapor-phase 

reaction, solid-state reaction, or electrolytic reduction. 

By using electrolysis, large single crystals can be grown. 

The tungsten bronzes, M^WOg, have been studied 

extensively (12). Those that have received the most 

attention have been the alkali tungsten bronzes, especially 

those with sodium. Sodium tungsten bronze was discovered in 

1824 by Woehler (13,14), who noted the formation of golden 

yellow crystals with a metallic appearance in passing dry 

hydrogen over heated acid sodium tungstate. Over a century 

after its first preparation, Haegg (15,16) found that all 

sodium tungsten bronzes having cubic symmetry fall under the 

formula Na WOg, where x can vary from about 1 down to about 
X J 
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0.3. The bronzes acquired their name, given to them by 

Phillip and Schwebel (17)3 from the deep bronze color of 

Na^ gWO^. Shanks (I8) has described the phases of sodium 

tungsten bronze obtained by fused salt electrolysis as a 

function of the temperature and composition of a melt of 

NagWOjj and WO^. 

Regardless of their symmetry, the phases of all the 

tungsten bronzes have one common structural feature: they 

are all an array of WOg octahedra linked together at their 

corners (19). The connections between octahedra in the 

different phases may leave open trigonal, tetragonal, penta­

gonal, or hexagonal interstitial sites. All but the trigonal 

sites may be large enough to accommodate an alkali or other 

metal atom. Which types of Interstitial sites are present, 

and how many of each type are occupied by a particular 

metal atom, distinguishes one tungsten bronze from another. 

WOg has a crystal structure composed of octahedra sharing 

corners just as do its bronzes. A tungsten bronze may then 

be considered to come from a form of WO^ whose higher 

symmetry has been stabilized by the presence of some other 

metal atoms. 

Among the tungsten bronzes, those of sodium seem to be 

the only ones that form a continuous sequence of phases 

covering the full range of composition, 0<x<l. As the 

sodium concentration decreases, Na WO, undergoes transitions 
X D 
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that lower Its symmetry from cubic (15jl6,20-23) to tetra­

gonal (24-27) to orthorhomblc (28) to monocllnic (28). When 

the sodium content Is very low, Na WO, is just lightly doped 
X J 

WO^, which is Itself monoclinic (29). The ranges over which 

these phases are homogeneous are roughly l>x^0.5 for the 

cubic phase, 0.5>x^0.2 for one tetragonal phase (Tl), 

0.2>x^0.06 for a second tetragonal phase (T2), and 0.06>x 

for the orthorhomblc and monoclinic phases. Recent crystal 

structure determinations of Na^ g^WO^ and Na^ 48^^3 ) 

have shown that the Tl phase actually comprises two different 

tetragonal space groups. A temperature versus composition 

phase diagram has been constructed for this system by 

Ribnick e^ a^. (28). 

One reason Na WO, is the most studied tungsten bronze 
X J 

is that it has the largest cubic phase region. This region 

has been extended down to sodium concentrations as low as 

X = 0.22 by diffusing out sodium from a cubic crystal at 

high temperature and then cooling rapidly (30-3^). The 

metastability of the cubic phase for such low values of x 

is not too surprising in view of the radical atomic rearrange­

ment needed to transform from the cubic to the Tl structure. 

Also, the cubic and T2 structures are quite similar, 

differing most noticeably in the displacement of the tungsten 

atoms from their cubic positions in the tetragonal phase. 
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There appears to be a linear relation between the x 

values and lattice constants of a cubic tungsten bronze 

(35,36). Measurement of the lattice parameter is often used 

to find the composition of a cubic M„WO, crystal. Na WO^ is 
X o X j 

actually cubic for ^^0.5 only at temperatures above '^/^OOK., 

At lower temperatures a very small tetragonal distortion has 

been observed using NMR techniques (37) that has not been 

detected using X-ray or neutron diffraction. 

A partial ordering of the sodium atoms occurs in 

Na^ 75^^3 (21). In this ordered structure the lattice 

constant is doubled and the simple cubic sublattice of 

sodium sites has vacancies at the body-centered cubic lattice 

points of the new unit cell. Anomalies appear in the x-

dependence of the resistivity, the Hall coefficient, and the 

Seebeck coefficient in the vicinity of this sodium ordering 

(38). 

A connection between the cubic structure and the 

metallic behavior of a tungsten bronze is suggested by the 

observation (30) that, for any metal atom M, there seems to 

be no known M W0_ crystal which becomes cubic without also 
X J 

becoming metallic. The high electrical conductivity of 

tungsten bronzes with a high value of x for the oxidation 

state of M has drawn much of the attention given to these 

materials. Pure WO^ is an Insulator (39j^O). At 30OK the 

conductivity of Na^ ggWOg is 0.64 x 10^ (fi-cm)"^ (38), and 
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rises rapidly as x increases. This approaches the conduc­

tivity of copper, which is 5.88 x 10^ (f2-cm)~^ at 295K (4l). 

Many measurements have been made of the electronic 

transport properties of the sodium tungsten bronzes (30,31, 

34,38,42-48). These Include resistivity. Hall coefficient, 

and Seebeck coefficient data taken on samples with sodium 

concentrations that cover the entire cubic phase region, 

and taken at temperatures from 4.2 to 300K. The conduc­

tivities of Li W0_, Na W0_, and K W0„ show practically no 
X J X J X J 

dependence upon either the alkali atom or the crystal 

structure, and vary with x in a manner indicative of a metal-

npnmetal transition at x 0.2 (43,49) . 

The Hall coefficients of Na W0_ are independent of 
X J 

temperature from liquid helium to room temperature. For 

crystals homogeneous in electrical resistivity, the Hall 

coefficient, R, leads to an effective number of conduction 

electrons, n* = 1/Re, that is greater than the number of 

sodium atoms per unit volume. The actual number of conduc­

tion electrons is expected to be less than the effective 

number determined from the Hall coefficient when the Fermi 

surface is not spherical (38). The diffusion contribution 

to the Seebeck coefficient is not proportional to , 

and the lattice contribution to the Seebeck coefficient 

exhibits variations with x consistent with a nonspherical 

Fermi surface for Na WO, (42). These results have been 
X i 
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interpreted, under the assumption that each sodium atom 

contributes one electron to the conduction band, as evidence 

that the free-electron approximation does not provide a 

satisfactory explanation of the electronic properties of the 

sodium tungsten bronzes. 

The heat capacity (32,50-52) and magnetic susceptibility 

(32,53-56) results for the cubic sodium tungsten bronzes 

concur in the conclusion that the conduction electrons do not 

conform to a free-electron model. Both the electronic 

contribution to the heat capacity and the contribution to the 

susceptibility of the conduction electrons due to Paull spin 

paramagnetism are proportional to the density of states (to 

a first approximation). The density of states at the Fermi 

energy deduced from the heat capacity and magnetic suscepti­

bility data depends linearly on the sodium concentration x, 

1/3 and has a nearly zero Intercept. An x , not an x, 

dependence follows from the free-electron model. This 

indicates that the density of states increases faster with 

energy than the rate of a parabolic, nearly free-electron 

band (for which the density of states Is proportional to 

1 / P 
E ). The weak paramagnetism of cubic Na W0„ was found to 

X J 

be independent of temperature from 70 to 30OK (53). 

The metallic behavior of the sodium tungsten bronzes 

that Is reflected in their electrical, magnetic, and thermal 

properties might well be expected to evidence Itself in a 
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21 
relatively large, positive (Knight) shift of the Na nuclear 

magnetic resonance (NMR). A strong paramagnetic shift Is 

characteristic of the Interaction of the nuclei with the con­

duction electrons in ordinary metals (57)• However, NMR 

21 measurements of the Na resonance in several sodium tungsten 

bronze crystals detected very small (nearly zero), diamag-
pQ 

netlc shifts with respect to the "^Na resonance in aqueous 

NaCl (58). This result indicates that, despite the fact that 

the conduction electrons come from the sodium atoms, there 

must be little, if any, sodium s character in the electronic 

states near the Fermi level. 

Sodium tungsten bronze has been the subject of several 

NMR studies (33,37,58-60). Both the ^^Na and resonances 

have been observed. For both these nuclei in cubic Na W0_ 
X J 

— 1 p 
the relaxation rate (T^T)~ is proportional to x (T^ is the 

nuclear spin-lattice relaxation time and T is the temperature) 

(33). According to a one-electron theory for a homogeneous 

metal, (T^T)~^ is also proportional to the square of the 

density of states at the Fermi energy. Taken together, these 

results indicate that the density of states- is proportional 

to X, In agreement with the heat capacity and magnetic 

susceptibility results, provided that the cubic sodium 

tungsten bronzes are homogeneous metals. 

The ability to control the number of conduction 

electrons through changes of composition has made the study 
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of superconducting properties in the tungsten bronze system 

of particular interest. The first report of superconduc­

tivity in this system was made by Raub e^ al. (61). They 

observed a superconducting transition temperature of about 

0.57K in the T1 phase of sodium tungsten bronze. A dramatic 

increase in this critical temperature, T^, with decreasing 

sodium concentration, x, has been observed by Shanks (62) 

as the composition at which the transition occurs from the 

T1 to the T2 phase is approached. As the x-value decreases, 

the transition temperatures increase exponentially from a 

T^ 0.7K at x 0.4 to a T^ "X; 3K at x 'v- 0.2. The fact that 

this enhancement of T is associated with both a phase 
c 

transition and a metal-semiconductor transition suggested 

the possibility that a soft mode instability might be 

influencing the electron-phonon interaction. 

Ngai and Silberglitt (63) studied the effect of lattice 

instability on superconductivity in sodium tungsten bronze. 

They proposed a simple model from which they concluded that, 

to correctly predict the enhancement of T^ very near the 

transition, phonon-configuration coupling is essential. In 

this system the simultaneous occurrence of a superconducting 

and a structural transition is possible because the phonon 

that assists configurational tunneling between the tetragonal 

phases softens as a function of composition, not of 

temperature. 
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CHAPTER III. UNDERLYING THEORETICAL IDEAS 

Bringing the Many-Body Problem to One-Electron Form 

Quantum mechanical calculations of the properties of 

solids begin with the simplification of Schroedinger's 

2 equation for a system of perhaps 10 or more nuclei and 

electrons. The Born-Oppenheimer approximation (64) separates 

the motion of the electrons from the motion of the nuclei, 

and leaves a many-body problem for the motion of the 

electrons in the field of nuclei placed at fixed positions. 

The Hartree approximation (65-6?) replaces the instantaneous 

interaction between each pair of electrons by an Interaction 

between a single electron and a self-consistent field that 

simulates the collective effect of all the other electrons. 

Consideration of the antisymmetry of electronic states to an 

interchange of the coordinates (space and spin) of any two 

electrons, leads in the Hartree-Pock approximation (68) to a 

self-consistent field in which all electrons use all orbitals 

in a way that agrees with the Pauli exclusion principle (69). 

The great lowering of difficulty gained by calling upon 

these approximations comes with a weakening of the theory, 

since the neglected interactions do exhibit very interesting 

observable effects (70). The electron-phonon interaction 

can enhance the effective electron mass, the electronic 

specific heat, and the oscillator strength of optical 
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transitions, and Is central to the theory of superconduc­

tivity. Electron-electron correlation plays an Important part 

in plasma oscillations in metals, exciton effects in 

insulators and semiconductors, ferromagnetism in transition 

metals, and the simultaneous appearance of localized and 

itinerant properties. 

Use of the Born-Oppenheimer and Hartree-Fock approxi­

mations bases the calculation of electronic properties on a 

one-electron (or independent particle) model. Within this 

model the Hartree-Pock equations afford the "best" set of 

orbitals (up to an arbitrary unitary transformation). Close 

approximations to solutions of the Hartree-Pock equations 

can now be found without extraordinary effort, either 

numerically or analytically, for all the atoms and for many 

small molecules, but not for solids. What makes solution of 

the Hartree-Pock equations so difficult, especially for 

solids, is the way that they eliminate the self-interaction 

of the electrons that is implicit in their coulomb terms. 

The exchange terms serve solely to rid the equations of those 

impossible encounters In which an electron repels itself 

(71). They achieve this by associating each orbital with a 

different potential field. Having to deal with potentials 

that are different for each orbital considerably complicates 

solution of the equations. 
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Not only are the Hartree-Pock equations Intractable 

for solids, but their solutions are suspect, since their 

exact solution for a free-electron gas predicts the vanishing 

of the density of states at the Fermi energy. This conflicts 

with the well-known free-electron-like behavior of the simple 

metals, for which a density of states proportional to the 

square root of the Fermi energy leads to good agreement with 

measurements of the heat capacity and paramagnetic suscepti­

bility of the conduction electrons. This discrepancy comes 

from the dependence of the exchange term in the Hartree-Pock 

equations on the orbital considered. For a free-electron 

gas this orbital dependence of exchange proves to be nearly 

cancelled by a similar dependence of the long-range 

correlation among the electrons (72). An inability to 

describe long-range correlation is inherent in a Hartree-

Fock wavefunction, since it introduces exchange terms which 

are always positive (71)• 

Slater's Statistical Exchange Approximation 

To avoid both the difficulties in solving the Hartree-

Fock equations, and the suspected Inadequacy of their solu­

tions for solids, resort is often taken to Slater's statlstl-

1 /o 
cal exchange (or Xa, or p ) approximation (73-75). The 

heuristic argument that recommends this approximation rests 

upon an interpretation of exchange much like the idea of the 
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Fermi hole (76-78). Each electron is surrounded by a region 

from which a probability density equal to that for one 

electron is excluded. Then, in a system with N electrons, 

each electron will interact, as it should, only with the 

N-1 other electrons (not with N, as is the case for the pair 

density that determines the coulomb potential). 

Slater's interpretation of exchange refers, not to the 

usual form of this term in the Hartree-Fock equations. 

but to the equivalent form. 

-E n, / dv„(})*(2)()), (2) 
Lj j ''1 

4)j(l), (1) 

r (|)*(l)(},.(l)c()*(2)(f) (2) 

(})^ (1)4)^(1) 

X 1 
^12 

^^d). (2) 

Here (using atomic units, but with energies in rydbergs) the 

orbitals, (|)^ and (|)j, themselves solutions of the Hartree-Fock 

equations, are occupied by two electrons, 1 and 2, that are a 

distance r^g apart. The number of electrons in orbital cpj 

is nj, where n^ = 1 if (()j is occupied and n^ = ,0 if it is 

not. The equivalent expression (Eq. 2) restores each Hartree-

Fock equation to the more familiar form of a one-electron 

Schroedinger equation, in which the wavefunction of an 
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orbital Is simply multiplied by the potential of the motion 

in that orbital. 

The exchange potential of orbital i, is construed 

as if it were for the classical electrostatic interaction 

between an electron and the exchange charge density 

This exchange charge density has two noteworthy character­

istics. When the coordinates of electrons 1 and 2 are the 

same, P^HPI equals the total charge density at that point: 

When integrated over the coordinates of electron 2, PxHPl 

is seen to be a distribution of one electronic charge 

(assuming orbital 1 is occupied): 

J 

**(l)*j(l)**(2)*i(2) 
(3) 

^ **(l)*l(l) 

(4) 

^^^2 PxHPi /dVg *](2)*i(2) 

= E n 

(5) 

These two characteristics, taken together, indicate that 

each exchange charge density is concentrated about the 
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position of electron 1, and is carried along with this 

electron. An electron in a crystal, no matter where it 

happens to be, then always finds itself in the field of an 

atom minus one electron and other atoms that are all 

neutral. 

Since the exchange charge densities of the occupied 

orbitals all equal p(l) whenever the positions of electrons 

1 and 2 are the same, and since they all integrate over 

space to the charge of one electron. Slater argues that they 

must not differ much from one another. This provides a 

rationale for use of a weighted average of the exchange 

charge densities of the different occupied orbitals. 

Replacement of the exchange charges in the Hartree-Pock 

equations with their weighted average makes all the orbitals 

solutions for a single potential field. 

The averaged Hartree-Pock exchange potential is in 

general not much easier to use than the original, Individual 

exchange potentials for each orbital. For a free-electron 

gas, however, this potential can be calculated exactly: 

At this point. Slater, by a grand act of intuition, suggests 

that a bona fide approximation to the Hartree-Pock exchange 

potential may be made by using instead the potential of 

Eq. 6 where p(l) is the local charge density as given in 

XHPi 
( 6 )  



www.manaraa.com

20 

Eq. 4. The Impulse behind this proposition comes from Eqs. 3 

and 4, and from a simple dimensional argument concerning the 

electrostatic potential at the center of the Fermi hole. 

These lend support to the idea that the exchange potential 

depends primarily upon the charge density, and rather little 

upon other things, regardless of whether or not the system 

is a free-electron gas. 

Use of a local function of the charge density in place 

of the nonlocal exchange potential of the Hartree-Pock 

equations greatly simplifies solution of the one-electron 

problem. In calculations of the electronic states of 

crystals, the Slater exchange approximation automatically 

preserves the correct periodicity. Although the Hartree-

Pock method is to be preferred as far as energies are 

concerned, the Hartree-Pock-Slater method has distinct 

advantages when dissociation, or the application of Permi 

statistics, is considered. 

The Korringa-Kohn-Rostoker (KKR) Method 

The KKR method is presented in five standard papers 

(79-83). The theory was developed independently by Korringa 

(79), from a multiple scattering point of view, and by Kohn 

and Rostoker (80), from a Green's function approach. Segall 

(8l) extended the theory to crystals with more than one atom 

per unit cell, and Ham and Segall (82) emphasized the need 
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to use the full Ewald summation procedure In order to obtain 

good convergence in the evaluation of the expansion 

coefficients of the Green's function. Myron (84) has 

presented the final formulas of the KKR method for several 

atoms per unit cell, including Ewald's method. The purpose 

of the following presentation is to give a more coherent and 

elementary treatment to the theory that stresses important 

points left unstated in the terse standard references. 

The time-independent Schroedinger equation determines 

the stationary states of a system - the states for which a 

wavefunction, jp, has a definite value of energy, E. Solving 

for ijj and E is so difficult a problem that simplified models 

must be introduced for all but the simplest physical systems. 

Such models are made (in a manner that may or may not be 

self-consistent) by assuming certain forms for the wave-

function and for the potential term in the Hamiltonian. An 

approximate method for solving Schroedinger's equation may 

proceed from one of these models in several markedly different 

ways. 

The form chosen for the wavefunction may determine the 

potential, or the form chosen for the potential may determine 

the wavefunction. The wavefunction may be determined by 

minimizing the energy, or the energy may be determined by 

boundary conditions on the wavefunction. Values for the 

energy may or may not be found by solving for the eigenvalues 
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of a hermltian operator or matrix. These differences have 

been mentioned because their recognition beforehand is helpful 

in coming to an appreciation of the KKR method. To make them 

plain, consider the following two examples. 

In the independent particle model, the wavefunction r j j  

that represents a closed-shell ground state has the form of a 

single antisymmetrized product of spin orbitals, (p. This 

functional form may be used directly to estimate the energy 

as the expectation value of the Hamiltonian, <f/>. <H> then 

becomes a sum of kinetic energy, nuclear attraction, coulomb, 

and exchange integrals, each of which is an energy contribu­

tion from one of the (j)'s to the total energy. Since the 

interelectronic potential depends upon the <p'Sj the wave-

function chosen here determines the potential. Parameters 

present in this form of wavefunction may now be varied so as 

to minimize the total energy in accordance with the 

variational theorem. Setting the variation of <H> equal to 

zero, with the (J) ' s themselves as the adjustable parameters 

(and under the constraint that the (j) ' s be orthonormal) leads 

to a set of equations that a best set of (|)'s must satisfy -

the Hartree-Pock equations. In these equations the (J)'s are 

all eigenfunctions of the same hermltian operator, and the 

eigenvalues are the orbital energies. Since the Hartree-Pock 

equations are themselves very difficult to solve, the (j)'s are 

usually approximated by an expansion in a set of basis 
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then minimized with respect to the coefficients. This reduces 

the problem to one of solving a generalized eigenvalue 

equation involving hermitian matrices. The matrix elements 

are integrals of the same hermitian operator between each 

pair of basis functions. (The difficulty of evaluating these 

integrals often leads to further simplifications, and to 

correspondingly less and less rigorous models.) Each matrix 

element has an interpretation as a kind of interaction energy. 

The eigenvalues of this matrix are the orbital energies, and 

the eigenvectors are the expansion coefficients of the (}> • s. 

This example is just the approximate method for solving 

Schroedinger's equation most familiar to those who have 

studied quantum chemistry (molecular orbital theory is based 

upon it). What characterizes this approach is the central 

role the energy plays: the magnitude of E determines the 

quality of ip (the lower E, the better iji). Emphasis on the 

energy agrees well with the preoccupation in chemistry with 

questions of chemical bonding and stability. 

The KKR method is a development in solid state physics, 

and differs in almost all respects from the foregoing 

approach. By way of contrast to what is common practice in 

molecular orbital calculations, an approach akin to the KKR 

method is taken in the second example. 
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Consider a model that simplifies a physical system down 

to the problem of the motion of a particle In a spherically 

symmetric potential. Such a model, with a potential 

proportional to the square of the radius, is of Interest in 

the study of some nuclear properties. A potential Inversely 

proportional to the radius, as is the potential of a coulomb 

field, might make this a model of the hydrogen atom, or of 

an ion with but one electron (like . Since the 

Hamiltonlan, expressed in spherical coordinates (r,8,0), with 

a potential that depends only upon r, commutes with the 

operators for the square of the angular momentum and the z-

component of the angular momentum, the wavefunctlons of the 

stationary states can be simultaneous elgenfunctlons of all 

three operators. The wavefunctlons can then be written as 

the product of an imaginary spherical harmonic times a radial 

function that depends upon the potential, the energy, and 

the total angular momentum. Here the appropriate potential 

determines the form of the wavefunction. The radial functions 

satisfy a differential equation, and may be found by numerical 

integration. Solutions of this radial equation exist for all 

values of the energy, but boundary conditions on the wave-

function may allow only certain solutions and energy values. 

Requiring the wavefunction to be finite at the origin, and 

zero at infinity, leads to the energy levels of the hydrogen 

atom. 
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The relation of this example to the KKR method arises 

from the use in the KKR method of spherically symmetric 

potentials about all the atomic sites in a crystal, and from 

the emphasis placed upon the wavefunction and its determi­

nation by the appropriate boundary conditions. Of course, 

in a crystal the wavefunction about an atomic site need no 

longer satisfy the boundary conditions for a free atom. And 

although the potential about each site has spherical symmetry 

(locally), the wavefunction must nonetheless meet the demands 

of an effective crystalline potential that has the full space 

group symmetry. 

An Integral form of Schroedinger's equation: the Green's 
function approach 

Emphasis upon the wavefunction is made manifest in the 

development of the theory at the outset. The KKR method 

departs from the accustomed stratagems for solving 

Schroedinger's equation by dealing with this equation, not 

in its familiar form as a homogeneous, second-order, linear, 

partial differential equation. 

but in its equivalent, though less well-known, form as a 

homogeneous Integral equation, 

("V^ + V(r) - E)iJ;(r) = 0 (7) 

i|j(r) = / d^r'g(r,r ' )V(r ' )ij;(r' ). (8) 
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The Green's function, g(r,r'), solves the differential 

equation 

(V^ + E)g(r,r') = 6(r-r'), (9) 

where 6(r-r') is the delta function. 

The equivalence of the differential and Integral forms 

of Schroedinger's equation is easily verified by first 

p 
operating on both sides of Eq. 8 with (V + E), and then by 

using Eq. 9 to show that the right-hand-side becomes V(r)ilj(r). 

(Note that (V + E) may be brought inside the integral, 

because it operates on r while the integration is over r'.) 

The Green's function, or free-particle propagator, 

that solves Eq. 9 can be expressed explicitly as 

1 piK|r-r'I 2 
g(r,r') = g(r-r') = - TJJ , where K = E. (10) 

Note that in Eq. 8, the energy E, upon which the Green's 

function depends, is the eigenenergy of the Schroedinger 

equation, and that for particular boundary conditions, the 

integral equation, just like the differential equation, has 

solutions only for certain values of E. 

Equivalence of the integral equation to a variational principle 

When the exact solution to an equation is unknown (as is 

almost always true of the solution to Schroedinger's equation), 

physical intuition, theoretical arguments, or hard experience 

may suggest that the solution sought has a form somewhat 
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like one that is attainable with a specific trial function. 

Among those methods for obtaining an approximate solution 

that use trial functions, and that take the general approach 

known as the method of weighted residuals, the variational 

method possesses several advantages (85,86). Of these 

methods, only the variational method guarantees real values 

when used for finding approximate solutions to eigenvalue 

problems. Besides providing an approximate solution, the 

variational method provides an accurate value for some 

characteristic quantity - the functional whose variation is 

considered. When <H> is varied, subject to the normalization 

of ip, an accurate value is found for E. As is well-known, 

accuracy to only first-order in the approximate solution 

results in accuracy to second-order in the value of the 

functional. Since it is usually possible for errors to 

cancel, an accurate functional may come from an inaccurate 

function. Nonetheless, the value of the variational method 

lies in part in that the value of the functional provides a 

(more or less sensitive) criterion with which to measure how 

good a particular approximate solution happens to be. 

In essence the variational method seeks to find a 

functional. A, whose stationary values are determined by the 

equation whose solution is sought. Or put slightly 

differently, the function that satisfies the variational 

principle, 6A = 0, is the very function that solves the 
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equation that has yet to be solved. The functional whose 

stationary values occur for solutions to the (differential) 

Schroedlnger equation satisfied by both \jj and ip* is 

A = |{/dTii^*(H-E)ijj + f d T \p(H-E)\p*} (11) 

(an expression for A symmetric in ijj and ^*). The first 
y, 

variation of A (considering ip and ijj to be independent) is 

then 

ÔA = |{/dT[ôip* (H-E)iJ; + ip* (H-E)Ôij;] 

+ /dT[6^(H-E)^* + (H-E)] } , 

which may be rewritten (adding and subtracting integrals 

p 
involving V ) as 

6A = /dT6i|^*(H-E)ip + |-/dT[ôip*V^ii; -

+ fdTSip(H-E)\lj* + |/dT[ôi|;V^i|;* - ip*V^ôipJ. (12) 

This last equation makes plain that, when \p and are 

solutions to Schroedlnger's equation, A is stationary, not 

for arbitrary variations of ip and ip*, but for those variations 

for which the second and fourth terms also are zero. 

These two seemingly troublesome terms have an interpre­

tation based upon the time-derivative of the probability 

density, p = ip ip. If jp and ip are exact solutions to time-

dependent Schroedlnger equations, then 
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l^p = - *9^**). 

The second term is the variation of —g-ifiS/8 t/dtp with respect 

to ip* f and the fourth term is the variation of ^iti3/9t/dTp 

with respect to ijj. These terms are zero if the probability 

density is conserved (as it must be for any closed physical 

system). By using Green's theorem to transform each volume 

integral into a surface Integral, both of these terms can be 

interpreted as a boundary condition. They are zero when the 

flux into or out of a system is zero. For a bound state of 

an atom or molecule, they are zero because, everywhere on 

the boundary at infinity, the wavefunctlon must be zero. 

For a propagating state of an infinite crystal, they are 

zero when the wavefunctlon has the correct translatlonal 

symmetry (when the wavefunctlon is a Bloch function). Then 

the contributions from conjugate points on the surface of a 

unit cell exactly cancel (as many electrons enter a unit 

cell as leave it). Furthermore, these boundary conditions 

on ip and must equal zero for the Hamlltonian to be 

hermitlan (as may be shown by shifting H, say, from to ip* 

using Integration by parts). Because of this, care must be 

taken not to use the prior knowledge that the Hamlltonian 

must be hermitlan in carrying through the manipulations that 

lead to Eq. 12. When the boundary terms in this equation 

equal zero, solving the variational problem for the functional 
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set forth in Eq. 11 is completely equivalent to solving 

Schroedinger's equation. 

The variational principle that is equivalent to the 

differential form of Schroedinger's equation (discussed as 

an example up to this point) has one further advantage of 

its own. Not only does it provide an estimate of the energy, 

but it provides one that is an upper or lower bound to thé 

true value of the energy. This principle reduces to the 

minimization of <H> in order to find the "best" ground state 

wavefunction attainable with a specific trial function (if 

this function is already normalized). As will be shown next, 

the variational principle that is equivalent to the integral 

form of Schroedinger's equation does not share this 

advantage. 

The functional whose stationary values occur for 

solutions to the integral equation is 

A = /d^r^i|j* (r)V(r)iJ;(r ) 

- /d^r/d^r'ijj*(r)V(r)g(r,r')V(r ' )i|^(r ' ) (13) 

(an expression, like that for A in Eq. 11, symmetric in ip 

and ip*). The equivalence of the variational principle, 

6A = 0, to Eq. 8 is not difficult to prove. What is note­

worthy is that, unlike in Eq. 12, no boundary terms occur 

(the integrands involve no differential operators). A is 

stationary for arbitrary variations of IJJ and - even for 
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those that violate the conditions which the true solution 

must satisfy. 

The relationship between A In Eq. 11 and A In Eq. 13 Is 

revealed by taking the following steps. Letting 

^(r) = /d^r'g(r,r ' )V(r ' )ij;(r ' ), (l4) 

and using Eq. 9, Eq. 13 becomes 

A = /d^rij;* (r )/d^r ' 6 (r-r ' )V(r ' (r ' ) - /d^rtj^*(r)V(r)(j)(r) 

= /d^rijj*(r)/d^r ' (V^+E)g(r,r ' )V(r ' (r ' ) 

- /d^ri|;*(r)V(r)<|)(r) 

= /d^r [ijj* (r ) ( V^+E)(j) (r ) - (r )V(r )4)(r ) ] 

= - /dTijj*(H-E)(f). (15) 

If the boundary conditions are satisfied so that H will be 

hermltlan, the two variational functlonals reduce to one 

another when ej) equals ip. They are the same only for the 

solutions to the Integral Schroedlnger equation, only when 

Eq. l4 becomes Eq. 8. For a trial wavefunctlon, the 

variational functional used In the KKR method Is not simply 

related to the expectation value of the Hamlltonlan, and 

will not provide an energy which Is a bound to the true 

value of the energy. 

An Interpretation of A ,  which brings out the significance 

of this functional as a measure of the quality of an 
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of A as an expectation value: 

A = = <V(ip~(li )/\p>. 

If ip were the exact solution to Schroedlnger 's equation, (j) 

would be Identical to ip (Eq. l4 would become Eq. 8), and A 

would equal zero. When Is some trial function, # / 

and A represents an average residual potential energy due 

to the difference between them. Alternatively, and more In 

the spirit of the KKR method, due to an emphasis on the 

wavefunctlon rather than on the energy, A may be Interpreted 

as an average error In (f) relative to ip that Is weighted by 

the potential, V. This weighting Is Important If the 

variational principle Is to produce an approximate solution 

with an acceptable energy. The energy Is most sensitive to 

those errors In the wavefunctlon present where the potential 

Is deepest. As a consequence the variational process may be 

expected to do whatever It can to lessen the errors (or 

perhaps promote cancellation of the errors) that occur In 

the regions closer to nuclei, to the detriment of those 

regions farther away. In the KKR method the variational 

process attempts to minimize the difference between (j) and 

ijj. The "best" ip Is the one which most nearly transforms 

Into Itself, as does the exact solution to the Integral 

Schroedlnger equation. 
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Integral Schroedlnger equation for a periodic potential 

If the stationary states determined by the Schroedlnger 

equation are those for the motion of an electron In the 

periodic potential of a perfect crystal (V(r) = V(r-r^), 

where r^ Is one of the translation vectors of the crystal 

lattice), the integral In Eq. 8 can be changed from one over 

the entire coordinate space to one over the volume of just a 

single unit cell (87). This may be achieved by a geometrical 

partitioning of the crystalline potential: 

V(r) = S V(r-r^), where T(r-r^) = Inslde^oell 

By substituting this potential into Eq. 8, the integral 

becomes a sum of contributions from the individual cells: 

i|;(r) = Z f d^r'g(r-r ' )v(r'-r )ip(r^), 

where is the volume bounded by unit cell s. Changing 

the variable r' to r'+r , 

\|j(r) = / d^r ' Z  g(r-r'-r^)v(r')^(r'+r ), 
' ̂  g S S 

and using Bloch's theorem, 

i|;j^(r'+rg) = e^-*-s ^^(r/), 

returns the integral Schroedlnger equation to its original 

form, 

ilj(r) = /^d^r'G(r ,r ' )V(r ' )ii^(r ' ) J (16) 
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but with integration over only one unit cell, and with 

g(r,r') replaced by the complete Green's function, 

G(r,r') = G(r-r') = Z g(r-r'-r )e^—*-s. (17) 

G solves the same differential equation as does g (Eq. 9), 

and Eq. l6 is equivalent to a variational functional like 

Eq. 13, but with G replacing g. 

Transformation of the integral Schroedinger equation to a 
surface condition 

The crystalline wavefunction, (r ), which in Eq. 16 

transforms into itself under multiplication by GV and 

integration over the volume of a unit cell, satisfies an 

equivalent equation that is a surface condition on the 

faces of a unit cell. To derive this equation, note that 

ip(r) = f d^r';j;(r ' ) 6(r-r ' ), 
T 

use this relation to rewrite Eq. l6 as 

J d^r ' [i|;(r ' )ô(r-r ' ) - G(r,r ' )V(r ' )ij;(r ' ) ] = 0, 
T 

substitute for 6(r^-r') from Eq. 9 (replacing g with G) and 

for Vip from Eq. 7, 

/ d^r ' [i|j (r ' )V ' ̂G(r ,r ' ) - G(r,r ' )V ' ̂i|;(r ' ) ] = 0, 
T 

and apply Green's theorem to transform from a volume to a 

surface integral. 
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f ds ' • [i|;(r ' )V'G(r,r ' ) - G(r,r' )V'^(r')] = 0. (l8) 
a 

a is the surface of a unit cell. 

This condition, Eq. l8, is reminiscent of the problem 

encountered in the cellular method of matching an approximate 

wavefunction in contiguous cells at the boundary.. In the KKR 

method an approximate ip will not transform into Itself (Eq. 

16), but will become instead some cj). Eq. 16 then no longer 

holds true (the leftmost ip should be ^, and the surface in­

tegral of Eq. 18 equals a nonzero value that measures the 

disparity between ip and (j) at all points on the boundary of 

a cell. Variation of A (Eq. 13), say, with respect to the 

expansion coefficients of ip is here seen to be an attempt 

to minimize the mismatch between \p and 4> over a. As in the 

cellular method, solution of Eq. 18 is frustrated by the 

need to accurately extend the wavefunction out into the 

corners of a unit cell, and to perform an integration over 

the surface of a polyhedron as complex as a Wigner-Seitz 

cell. 

Simplifications from use of a muffin-tin (MT) potential 

These difficulties do not arise when an approximation 

to the crystalline potential, V^^(r), is constructed which 

is spherically symmetric within a radius Rj of each atomic 

site j and constant everywhere else. The radii of the 

regions with spherical symmetry must be chosen so that the 
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spheres about each atomic site do not overlap. The energy 

scale may then be chosen so that the constant potential 

between these spheres, the average of the crystalline 

potential over this Interstitial region, equals zero. This 

muffln-tln approximation to the potential Is best for those 

crystals with a closely packed structure, where MT spheres 

can be chosen so that their total volume per unit cell Is a 

large percentage of a cell's volume. 

When Vjyj^(r) replaces V(r) In Eq. 16, only the volume 

enclosed by the MT spheres contributes to the Integral, 

since Vjyj^(£_) = 0 everywhere outside them. Eq. l8 then 

becomes a sum of Integrals, each one over the surface of a 

MT sphere, Uj,: 

J *j' ^ 

- G(J'J')(rj,r/j,) |-^ ̂J'(r'j,)] = 0. (19) 

With use of a muffln-tln potential, ip and G are best 

represented In spherical coordinates, rj and r'^,, centered 

on atomic sites J and J'. In these coordinates the gradient 

normal to the surface of MT sphere j' Is just the partial 

derivative with respect to the radial component r'^,. 
4 t 

The wavefunction Inside MT sphere j', ̂  , is a solu­

tion to the Schroedinger equation whose potential is the 

spherical average of the crystalline potential inside this 
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sphere. The problem of a particle moving In a field with 

spherical symmetry has as an exact solution an infinite 

series expansion In spherical harmonics, 

= Z c-^' R-^' (r' ,) Y (r'.,), r'.,<R.,. (20) 
"J LM LM L,E J LM J J J 

The c's are expansion coefficients to be determined by the 

surface condition defined by Eq. 19. The R's are energy-

dependent solutions to the radial Schroedlnger equation: 

Ï- ̂  + V(r) - eIr g(r) = 0, 
L r^ dr dr r^ -I 

where R must be finite at the origin (here the prime on r 

and the Index j' are Irrelevant). A further approximation 

Is Introduced when, as a practical matter, the series In 

Eq. 20 Is truncated to the first few terms. This truncation 

affects the accuracy of the desired eigenvalues E. One of 

the strengths of the KKR method Is Its very good convergence, 

as evidenced by the need, ordinarily, to use values of L only 

up to 2 In order to obtain sufficiently good results. 

Now an appropriate explicit expression for G Is needed 

where It enters Eq. 19. 

Various expressions for the Green's function 

Placing the explicit expression for g(r,r'fr^) (Eq. 10) 

Into Eq. 17 gives the real lattice representation of the 

complete Green's function: 
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1 ^iK r-r'-r- ^ g 
G(r,r') = - ̂  E Y—pi—"I ® where K = E. (21) 

s ' — — —s ' 

A reciprocal lattice representation of G(r,r') can be 

found by replacing g(r-r'-^) in Eq. 17 with its k-space 

representation. Such an expression for g(r,r') comes from 

its expansion in the solutions to the homogeneous boundary 

value problem, (V^ + E) f(r-r') = 0 (recall that g(r-r',) is 

a solution to Eq. 9)- These solutions are the free-

particle eigenfunctions (plane waves). 

k/- - " T 

where T is the volume of the crystal (the normalization 

— 1 — 1 / ? 
constant is T~ , and not T , because f*f is integrated 

over both r and r'). To determine the coefficients for 

this expansion, substitute the series into the differential 

equation for g(r-r'), take the derivatives of f^, multiply 

both sides by f*,, and then integrate over r. The result 

is this expression for the expansion: 

1 ik"(r-r') 
g(r,r') = - m Z p . 

^ k k^_E 

When this expression for g(r,r'+r^) is placed into Eq. 17, 

Q(r.r') = L {- i S 
S ^ k k _E 

• = - i E el(k'-k).^^ , 

k k -E s 
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The summation over s equals Nô(k'-k-K ). N is the number of 
— — — 

unit cells In the crystal. The sum Is zero unless (k'-k) Is 

one of the translation vectors of the reciprocal lattice, . 

Summing over n to Include every k = k'(and then dropping 

the now superfluous prime from k') gives the reciprocal 

lattice representation of the complete Green's function: 

1 l(^+k) • (r-r ' ) 
G(r,r') = - 1 Z ^ ~ ~ (22) 

^ n (K +k) -E 
—XI — 

(note that T = NT, SO that x Is, as before, the volume of 

a unit cell). 

Inspection of the real or reciprocal lattice.represen­

tation of G(r,r') reveals that the complete Green's function 

has these properties: G is a function of both k and E; It 

satisfies Bloch's theorem, G(r+r^,r') = e^—*—SG(r,r'); it 

is hermitian, G(r,r') = G*(r',r); it is singular when 

r = r', due to the term in Eq. 21 in which r = r =0; and 
— — ^ —s —o ~ 

due to the denominators in Eq. 22, G has singularities at 

those values of E equal to the free-electron energies. 

For crystals having more than one atom per unit cell, 

the complete Green's function may be represented in 

coordinates, r^ and r/^,, relative to a particular pair of 

atomic sites, j and J'. Choosing these coordinates for G 

is consistent with the commonplace and convenient use of 

functions centered on the atomic sites to represent the 
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potentials and wavefunctions present In a Schroedinger 

equation (Eq. l6) or a variational principle (Eq. 13). To 

change to these coordinates, simply let r = r.+a. and 
— —J —J 

r' = ïl'jf+ajij where a^ and a^ , are the position vectors with 

respect to the origin of atomic sites j and j'. The real 

lattice representation of G then becomes 

where ÏLgjji = ^Ig-aj+aj t Is the vector from atomic site j 

in the central cell to atomic site j' in cell s. The 

reciprocal lattice representation of G becomes 

"J n (K +k) -E 
' —n — 

X (24) 

In Eq. 22 or Eq. 24, the complete Green's function is 

expanded in functions that describe the motion of a free 

particle having a definite linear momentum. G can also be 

expanded in functions that describe the motion of a free 

particle having a definite angular momentum: 

( 1  1  '  )  
^Àm A'm' expansion coefficient, J^ is a spherical Bessel 

function, and n^ is a spherical Neumann function. Making this 
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expansion of G is a complicated analytical problem, and care 

must be taken to deal correctly with the singularity of G 

when r = r'. The form of G in Eq. 25 holds for rj<r'j,, 

when j = J', and for (r^+r'^,)<|a^-a^,| when j / j'. 

The KKR secular equation in its standard form 

To arrive at last at the secular equation of the KKR 
•5 t 

method, substitute Eq. 20 for the trial wavefunction 

Ci 1 ' ") 
and Eq. 25 for the complete Green's function Gr into 

the surface condition they should satisfy, Eq. 19, multiply 

by and integrate out all angular dependence from 

the equation: 

E Z Z 
j'LM Zm &'m' 

%j' d d y 
_L dr' , ^&m,&'m' *&m,A'm' dr',, 

J  V 

cJ' 
LM 

X /df2^.Y^^(RJ (RJ )/ds'Yj^j^^(R'J , )Y* (R, ) = 0. 

( 2 6 )  

1 ' f 1 1 M 
The dependence of on E and r'^,, and of on r^ 

and r'.,, is understood in Eq. 26. Gn£'^,\ is the 
J itm ,%'m 

bracketted term in Eq. 25. Because G, is singular when 

r = r', a limiting procedure must be used to evaluate 

integrals involving G taken over r or r'. This is done by 

evaluating the surface integrals in Eq. 19 over spheres of 

radius r'j, = Rj,-e. When j and J' are the same, r is 

restricted to the sphere rj = Rj-2e, so that r^ never 

equals r/^,. After all else is done, the limit e->0 is taken. 
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The integral over the surface area s ' equals t i j 

and the Integral over the solid angle equals 

Eq.•26 then becomes 

V FP J ' É QCJSJ') _ Q(JJ<3') d j ' 
Tp.tmrL^' dr'i, dr',, '  j '&'m 

(27) 

Note that in Eqs. 26 and 27 the arguments of R and G are 

going to have the values r^ = Rj-2E and r'^, = Rj,-e. 

Substituting the bracketted term in Eq. 25 for G, taking 

the derivatives of R and G with respect to r'^,, dividing 

through by j^(Krj) to leave functions only of r'^,, and 

rearranging terms gives 

+ Gjj,6aa,6 
R n ' - R ' n  

mm' " Rj'-R'j °i'm' 0' 

where c^j^^ = RJ,(RJ'-R'J)c|. £'m' 

( 2 8 )  

(29) 

Once the limit e->-0 has been taken. 

R = R J , ( R J , ) ,  R '  =  d p ,  -  j  R^lfr',,) 
"'j' '""j' ' 

j j ' = dr'j, 
"'j' ' 

n = njj, (KR j , ), n' dr'j , n, , (cr'j , ) r'j' = *j' ' 
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Eq. 28 defines a system of linear equations which have non-

trlvlal solutions when the determinant of their coefficients 

equals zero: 

^ f 
=  0  ,  ( 3 0 )  

Det J':jL 

where L = R'/R Is the logarithmic derivative of the energy-

4 ! 
dependent radial function R^, g at the MT radius R^,. 

Eq. 30 Is the KKR secular equation. It determines the 

relationship between E and k that Is needed to calculate 

the energy bands of a perfect crystal. 
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CHAPTER IV. THE CALCULATIONS AND THEIR 

COMPARISON WITH SOME EXPERIMENTS 

If sodium tungsten bronze were stoichiometric NaWO^j Its 

crystals would have the perovskite structure depicted in 

Figure 1. The Bravais lattice is simple cubic, and the space 

group is 0^. Using the primitive lattice translation vectors 

as the basis, the positions of the atoms in the unit cell may 

be indicated by choosing the coordinates (0,0,0) for W, 

(1/2,0,0) for 0^, (0,1/2,0) for Og, (0,0,1/2) for 0_, and 

(1/2,1/2,1/2) for Na. The point symmetry at both thé W and 

Na sites is 0^, and that at the 0 sites is The lattice 

constant was taken to be 3-860 A (35). Values calculated 

for the bond lengths are 1.930 % for W-0, 3.343 % for W-Na, 

and 2.729 A for 0-Na, 

The muffin-tin radii were determined by the following 

considerations. The MT radius of Na is limited only by the 

dimensions of the unit cell. The sum of the W and 0 MT radii 

equals the lattice constant, but their ratio may vary between 

the points where one or the other of their spheres touches 

the Na sphere. This leaves considerable freedom of choice 

for the W and 0 radii, at least ±0.3 In the absence of 

any geometrical ground for fixing the radii, the decision 

taken was to use the Bragg-Slater atomic radii, 1.35 X for W, 

0.60 X for 0, and I.80 X for Na (88), as a criterion. These 

radii are quite successful in reproducing observed interatomic 
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Figure 1. Crystal structure of cubic NaWO^. A sodium atom 

lies at the center of a cubic cell, a tungsten 
atom is at each corner, and an oxygen atom is at 
the midpoint of each edge 
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distances, and they correlate well with computed radii of the 

maximum radial charge density In the outermost shells of the 

atoms. Note that these radii nearly give the calculated W-0 

bond length. The actual MT radii used were those points on 

the logarithmic radial (Weber) mesh closest to the Bragg-

Slater radii: 1.310 % for W, 0.600 % for 0, and 1.848 A for 

Na. With this choice, over 6j% of the unit cell volume lies 

within the MT spheres. The relative sizes of these MT 

spheres are illustrated in Figure 2. 

The atomic configuration of W is (Xe)4f^^5d^6s^, of 0 

is (He)2s^2p\ and of Na is (Ne)3s^. The crystalline 

potentials were constructed from the Hartree-Pock-Slater 

atomic charge densities for these configurations (89) by 

using the a^ hoc method of Mattheiss (90). Pull Slater 

exchange was assumed (75). To guarantee a valid comparison 

between them, the WO^, OWOg, and NaWO^ band calculations were 

kept the same in all ways but one; in construction of the 

crystalline potentials, where contributions from neutral 

sodium atoms either were not (WO^ and OWO^) or were (NaWO^) 

included. In the DWO^ calculation a muffin-tin sphere was 

centered on the sodium vacancy • (91,92). This sphere 

serves to take into account the significant variation of the 

Interstitial potential that is characteristic of open crystal 

structures. Moreover, by treating the • and Na identically, 

this artifice provides a bona fide basis for analysis of the 
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Figure 2. Muffin-tin spheres about each atomic site in NaWO^ 

projected onto the basal plane. The radii shown 
closely approximate those used in the calculations. 
Solid circles are for spheres about sites that lie 
in the basal plane; dashed circles are for those 
that are a distance a/2 above the basal plane 



www.manaraa.com

48 

sodium atom's influence on the crystalline potential and, 

consequentlyJ on the band structure. The average potential 

in the interstitial region, the reference point taken for the 

muffin-tin potential, was -1,171 Ry for WO^, -1.6l4 Ry for' 

•WO^, and -1.730 Ry for NaWO^. 

A nonself-consistent'and nonrelativistic version of 

the KKR method was used to perform the calculations. Details 

obtained at this level of approximation may, of course, 

change when the model is improved; so care must be taken to 

base interpretations upon those features expected to be 

unaffected by improvements. Nonetheless, there is cause for 

confidence in nonself-consistent results when using full 

Slater exchange. Snow and Waber (93), Connolly (9^), 

Papaconstantopoulos et. §2- (95), and Anderson e^ aA. (96) 

found from their respective self-consistent calculations on 

Cu, Ni, V, and Nb that the interplay of configuration and 

exchange led to astonishing over-all agreement between non­

self-consistent results using full Slater (a=l) exchange and 

self-consistent results using less than full Slater exchange. 

Recent calculations by Walch and Ellis (97) on MgO, Myron 

and Freeman (98) on TiSg, and Moruzzi e_t al^. (99) on g-

brass (CuZn), support the same conclusion for compounds, • 

even when there is evidence of charge transfer. Perhaps of 

more concern is the spherical averaging of the potentials 

inside the muffin-tin spheres. This averaging acts counter 
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to any tendency towards the directional bonding one might 

expect In these compounds, particularly between the W and 0 

atoms. 

The band calculations used s, p, and d radial functions 

In each muffln-tln sphere. Therefore, the order of the KKR 

matrix was 36 for WO^ and 45 for OWO^ and NaWO^. The matrix 

elements were evaluated by using the method developed by Ham 

and Segall (81-83). The real and reciprocal lattice sums 

were truncated to 33 and 96 terms, respectively, and the 

Ewald parameter which produced convergence was found to be 

0.3. The accuracy to which each matrix element was calcu­

lated was 10~^ Ry~^. 

The Brlllouln zone for a simple cubic Bravais lattice 

Is shown In Figure 3> with the high symmetry points and 

lines that bound an Irreducible l/48th of the zone labeled 

as has become standard. Energy eigenvalues were calculated 

on a uniform, 56 point, n/5a mesh In this Irreducible part 

of the zone (Figure 4). These points, ordered as they were 

when the calculations were performed, with their degeneracy 

and their coordinates, are listed in Table 1. Over an 

energy range 1.2 Ry wide, up to I6 eigenvalues were found 

at a k-polnt. An iterative procedure was used to find each 

eigenvalue to within ±0.001 Ry. 

The results of these calculations, shown in Figures 5, 

6, and 7, clearly demonstrate how small an Influence Na has 
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z 

Figure 3. Brlllouln zone for a simple cubic Bravais lattice. 
An irreducible l/48th part of the full zone is 
shown with the designations due to Bouckaert, 
SiTioluchowski, and Wigner for the high symmetry 
points and lines 
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r 

Figure 4. Points of a w/5a mesh in an Irreducible wedge of 
the Brlllouin zone at which a full KKR calculation 
was performed 
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The 56 k-polnts at which a full KKR calculation was performed: their 
index i, degeneracy g, and coordinates in units, of. .0.2 ir/a 

5 a/TT (k^,ky,k^) i g 5 a/TT (kx,ky,kg) 1 g 5 a/TT (1 

(0,0,0) 20 12 (5,1,0) 39 24 (4,4,2) 

(1,1,0) 21 3 (5,0,0) 40 6 (5,5,2) 

(2,2,0) 22 8 (1,1,1) 41 24 (3,2,2) 

(3,3,0) 23 24 (2,2,1) 42 48 (4,3,2) 

(4,4,0) 24 24 (3,3,1) 43 24 (5,4,2) 

(5,5,0) 25 24 (4,4,1) 44 24 (4,2,2) 

(1,0,0) 26 6 (5,5,1) 45 • 24 (5,3,2) 

(2,1,0) 27 24 (2,1,1) 46 12 (5,2,2) 

(3,2,0) 28 48 (3,2,1) 47 8 (3,3,3) 

(4,3,0) 29 48 (4,3,1) 48 24 (4,4,3) 

(5,4,0) 30 24 (5,4,1) 49 6 (5,5,3) 

(2,0,0) 31 24 (3,1,1) 50 24 (4,3,3) 

(3,1,0) 32 48 (4,2,1) 51 24 (5,4,3) 

(4,2,0) 33 24 (5,3,1) 52 12 (5,3,3) 

(5,3,0) 34 24 (4,1,1) 53 8 (4,4,4) 

(3,0,0) 35 24 (5,2,1) 54 6 (5,5,4) 

(4,1,0) 36 12 (5,1,1) 55 12 (5,4,4) 

(5,2,0) 37 8 (2,2,2) 56 1 (5,5,5) 

(4,0,0) 38 24 (3,3,2) 
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Figure 5. Energy bands of WO^ along the symmetry axes 
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Figure 6. Energy bands of DWO^ along the symmetry axes 
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Figure 7. Energy bands of NaWO^ along the symmetry axes. 

The dashed line marks the Fermi energy (0.876 Ry) 
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on the structure of the valence and lowest conduction bands. 

The largest modification of the DWO^ band structure occurs 

among the higher energy states, where the presence of Na 

shifts the 15th band (numbering the bands in ascending order 

of energy) downward (this band corresponds to the band 

arising from in Mattheiss' ReO^ (8) calculation). The 

complex structure of these higher states comes from the 

crossing and strong mixing of this band with the 13th and 

l4th (e^ or F^g) bands (for comparison, Mattheiss' ReO^ 

calculation places the band completely above the r^2 

bands). There are slight shifts of some of the valence bands 

toward lower energy. There is also a slight rise of the 

conduction bands relative to the valence bands caused by 

their increased occupation giving rise to an increased 

coulomb repulsion for these states. Since the shape of the 

conduction bands remains essentially constant, the rigid band 

model will be valid for electronic properties depending on 

only these states. 

Why the DWO^ electronic structure changes so little 

when Na- is introduced may be understood simply by considering 

the • and Na muffin-tin potentials. The • potential is a 

hill-shaped barrier arising from the coulomb and (Slater) 

exchange contributions made by the W and 0 atoms surrounding 

the interstitial region. Adding in the potential contribu­

tions from neutral Na atoms affects the crystalline potential 
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In two main ways. It significantly lowers the muffin-tin 

zero, and it lowers the potential barrier about the Na site, 

leaving a hill that rings the Na potential well. Since the 

Na muffin-tin potential, over a sizable volume, is repulsive 

with respect to the average interstitial potential, thinking 

of the Na as a Na ion may be an oversimplification. What is 

remarkable about the • and Na muffin-tin potentials Is that 

the • potential in OWO^ effectively acts as a pseudo-

potential for the Na in NaWO^. The n potential barrier 

appears merely to mimic the cancellation of the core 

potential typical of pseudopotentials• The Na sublattice 

seemingly contributes a nearly flat potential, analogous to 

that of Na metal, changing the energy zero with hardly any 

change in energy band structure. In fact, the shortest 

Na-Na distance in NaWO^ is only a little longer than the 

nearest-neighbor Na-Na distance in Na metal. Radial distri­

bution functions calculated using the O and Na muffin-tin 

potentials are very similar throughout the energy range of 

the valence and lowest conduction bands. Their most signifi­

cant difference is the absence of radial nodes in the • 

functions, since there are no bound states to which they 

must be orthogonal (this is typical of pseudowavefunctions). 

Their likeness, together with the likeness of the W and 0 

radial functions in DWO^ and NaWO^, Implies similar sets of 

logarithmic derivatives, and therefore similar electronic 

structures. 
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For the calculation of the density of states and the 

Fermi surface, a least-squares Fourier fit was made to the 

energy bands at the calculated k-polnts. This fitting was 

done with the first 30 symmetrized plane waves In reciprocal 

space: 

where S.(k) = ^ f e^— ^ . 
^ ® a=l 

The number of operations a In the point group of the crystal 

Is g (48 for cubic symmetry). Is a translation vector In 

the real lattice. The Fourier coefficients, c^^, were used 

to evaluate energies at arbitrary points In the Brlllouln 

zone. This type of fit cannot represent energies near band 

crossings accurately, and spurious structure in the density 

of states or Fermi surface may result from this defect. 

The maximum errors and root-mean-square errors of this fit 

to the first 12 bands calculated are listed In Table 2. 

Density of states histograms were calculated using 

the linear analytic tetrahedron method (100,101). The 

Irreducible l/48th of the Brlllouln zone. Itself an 

Irregular tetrahedron, was subdivided into a large number 

of small tetrahedra. Within each tetrahedral microzone a 

surface of constant energy was approximated by a plane. 

This linear interpolation is determined uniquely by the 
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2. Maximum error, and root-mean-square error, 

^rms' the Fourier fit to the 56 k-points 

. calculated for the valence and lowest conduction 
bands of WO^, OWO^, and NaWO^ 

WO^ DWO^ NaWO_ 

^max ^rms ^max ^rms ^max ^rms 

5.7 

3.7 

8.3 

6 . 9  

5.5 

13.4 

8.6 

14.4 

11.7 

6.7 

5.4 

4.6 

2.9 

1.7 

3.3 

3.3 

2.3 

6 . 8  

2.7 

6.4 

4.9 

2 . 0  

1.8 

1.3 

6 . 0  

3.9 

7.2 

6.1 

12.3 

14.5 

7.0 

17.5 

10.8 

7.0 

8.1 

4.8 

3.2 

1.9 

3.4 

2.3 

5.0 

7.0 

3.1 

7.8 

5.3 

2.4 

3.6 

1.9 

2.9 

6.5 

6.7 

6.4 

15.5 

15.7 

9.1 

19.0 

11.4 

7.2 

6.9 

5.9 

1.1 

2 . 8  

3.5 

2 . 8  

5.0 

8.3 

4.0 

8.1 

5.7 

2.5 

3.1 

2 . 0  
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energy values at the four corners of a tetrahedron, and 

leads to analytic expressions for the surface area and the 

occupied volume Inside each one. The four corner energies 

were calculated with the Fourier fit coefficients. These 

energies and the volume of the tetrahedron determine the 

contribution to the density of states from one microzone. 

Among the advantages of this method are that the shape of 

the tetrahedron Is Irrelevant, that the Interpolation Is 

continuous throughout the Brlllouln zone, and that energy 

gradients do not occur explicitly. The convergence of this 

method as the Brlllouln zone Is further divided Is shown In 

Figure 8. The density of states for the valence and lowest 

conduction band of NaWO^ Is shown In Figure 9, and the 

densities of states from all three band calculations are 

compared In Figure 10, together with their Integrated 

densities of states. 

The dominant features of the conduction band density 

of states can be obtained from a simple LCAO model In which 

the conduction band .width Is due entirely to W-0 pdu inter­

action. Wolfram (102) has noted that in this model the 

energy bands have a two-dimensional character, that E(k) 

depends upon only two components of the wave vector, and 

that this requires the density of states to have a logarithmic 

singularity in the interior of the band and discontinuities 

at the band edges. 
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using the linear analytic tetrahedron method. 
The density of states of the conduction band of 
NaWOg is shown for subdivision of an Irreducible 

zone Into 512 (bottom), M096 (middle), and 
32768 (top) tetrahedra 
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The results of the calculation of the NaWO_ Perm! 
3 

surface are presented in Figures 11, 12, and 13. The three 

bands that cross the Fermi energy create the three sheets of 

the Fermi surface, labeled by Mattheiss (8) a, 3, and y .  

These sheets are electron-like, surfaces centered about r. 

a and g are closed, and y Is open along [100]. All three 

are pieces from three cylinders extended along the [100] 

directions. These pieces separate where the cylinders 

intersect. This is clearly seen in the cross section of 

the Fermi surface in the (100) plane (Figure 12). The 

diameter of the cylinders is quite uniform. Much of the 

curvature evident in Figure 12 comes from the Fourier fit 

to the energy bands. 

Campagna e;t aJL. (103) measured the X-ray photoemission 

spectrum of Na W0_ for the nominal compositions x = 0.620, 
X J 

0.764, and 0.805. Their data seem to substantiate the 

similarity of the Na W0_ and ReO- electronic structures. -
X o J 

They found an increase in the area of the conduction band 

peak near the Fermi energy proportional to the sodium 

concentration. This result provides direct evidence for 

the participation of the sodium valence electron in the 

filling of the conduction band. In Figures 14, 15, and 16 

their data are compared with the calculated density of 

states below the Fermi level. This comparison indicates 

that the conduction band below the Fermi energy is 12.5 ± 7.5 
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Figure 11. Sheets of the NaWO^ Fermi surface, a, B, and y, for the three bands that 
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Figure 12. Cross section of the NaWO^ Fermi surface In the 

(100) plane. The additional lines In the rXM 
section Indicate the change In the Fermi surface 
due to a shift In the Fermi energy of ±0.002 Ry 
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Figure 13. Sketches In three-dimensions of the a, 3, and y sheets of the NaWO^ 
Fermi' surface, after Mattheiss ^ 
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Figure l4. Comparison of photoemission data for the conduction band of Na WO, with 

the calculated density of states up to the Fermi energy. The experi­
mental and theoretical Fermi energies have been matched, and the 
calculated density of states has been scaled to fit the maximum in the 
data 
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Figure 15. Comparison of photoemission data for the conduction band of Na WO, with 

the calculated density of states as in Figure 14, but smoothed by a 
0.55 eV gaussian, the resolution function of the spectrometer used to 
obtain the XPS data. The three curves shown are, from right to left, 
linear expansions of the calculated density of states of 0, 10, and 
20 percent 
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Figure ig. Comparison of photoemission data with the density of states calculated 
for NaWOg. The experimental and theoretical Fermi energies have been 

matched, and the calculated density of states has been scaled so that 
the peak at 6.3 eV fits the maximum in the XPS data for the valence 
band 
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percent broader than calculated. Figure 16 shows that the 

photoemlssion spectrum does not simply reproduce the density 

of states;, the large peak at the top of the valence band in 

the density of states is absent in the photoemission results. 

This will be the subject of further comment after the orbital 

contributions to the density of states have been presented. 

Recent inelastic neutron scattering measurements on 

single crystals of cubic Na W0_ (104) confirm the two-
X J 

dimensional character of the Parmi surface and the validity 

of the rigid band model for these bronzes. The data shown 

in Figure 17 exhibit a large Kohn anomaly at (x,ç) = (0.56, 

0.315), (0.59, 0.345), and (0.83, 0.395) in the respective 

[100] longitudinal acoustic-phonon dispersion curves. Both 

the position and the shape of this anomaly are in accord with 

the calculated electronic structure. 

Electronic screening affects the longitudinal phonon 

frequency, J2(q). A simple model (105,106) relates this 

effect to the electron-phonon interaction W(q), the electron-

electron interaction V(q), and the susceptibility x(Q.)* 

p p (q) 
w (q) = 0 (q) - v(q) + l/x(q) ' 

A Kohn anomaly is a sharp feature in a dispersion relation 

produced by the singular behavior of xCq)» The dependence 

of X on q is 
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Figure 17. Longitudinal acoustlc-phonon dispersion curves 
for Na WOg along the [100] direction. Arrows 

X j 

Indicate the positions of the Kohn anomalies. 
The simple model mentioned in the text gives the 
dashed curve. The curves for x = 0.56 and 0.59 
have been displaced upward by 2THz and ITHz, 
respectively (ITHz = 4.14 meV) 
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. f(k) - f(k+q) 
X(&) - I E(k+q) - E(k) ' 

where f(k) Is the Fermi function. X ( Q .) is singular whenever 

q spans a significant piece of the Fermi surface. 

The results of numerical calculations of the q-dependent 

susceptibility of Na W0_ (104) are presented in Figure 18. 
X J 

The geometry of the Fermi surface largely determines the • q^-

dependence of x (107). For a cylindrical Fermi surface, 

with q perpendicular to the cylinder axis, x(£) can be 

evaluated analytically. Such a x> for a cylinder diameter 

Ç = 0.35J is labeled "analytic" in Figure 18. The two-

dimensional character of the Fermi surface derived from the 

KKR band structure is evident in the similarity of the 

analytical and numerical curves. 

The q at which the calculated X (Q ) exhibits a dramatic 

discontinuity in slope is the q at which the Kohn anomaly 

occurs. This q equals the X-T-X Fermi surface caliper. 

By using the rigid band model, the theoretical calipers 

were found to be q = 0.332, 0.3^2, and 0.404 for x = 0.56, 

0.59, and 0.83, respectively. These values are in good 

agreement with the observed positions of the Kohn anomalies, 

demonstrating the applicability of the rigid band model to 

cubic sodium tungsten bronze. 
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Figure 18. Numerically calculated q-dependent susceptibility 
of Na W0_ along the [100] direction for three x 

X J 
values. The curve labeled "analytic" Is the 
exact susceptibility for q perpendicular to the 
axis of a cylinder of diameter ç = 0.35. A 
constant (q-lndependent) term has been added to 
account for contributions from other bands 
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To determine the character of the electronic states 

that form the valence and lowest conduction bands, the wave-

functions of these states were studied. Each wavefunctlon 

was normalized accurately by following the Ingenious 

procedure of Janak e^ a^. (108) that requires no knowledge 

of a crystalline wavefunctlon outside the muffin-tin spheres. 

Prom each wavefunctlon's coefficients and radial parts was 

calculated the fraction of an electron inside each muffin-tin 

sphere which has s, p, or d character. The fractions for 

each orbital character inside each sphere are contributions 

to the density of states (DOS), and determine an orbital DOS. 

The orbital densities calculated for NaWO^ are shown in 

Figure 19 along with their sum (curve b) and the total DOS 

(curve a). The difference in area between the sum and total 

equals the number of electrons outside the muffin-tin spheres. 

To include these electrons would require knowing the inter­

stitial part of each wavefunctlon, partitioning this part 

in some more or less arbitrary fashion among the atomic 

sites, and then expanding the part assigned each site in its 

many angular momentum, components. 

The technique (109) used to construct the curves in 

Figure 19 is discussed fully in the Appendix. There is 

remarkable agreement between the sum of the orbital contri­

butions and the total DOS. Other attributes are: (1) that 

most of the structure present in each orbital DOS also appears 
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In the total DOS; (2) that structure not evident in the total 

DOS is small and often appears in more than one orbital DOS; 

(3) that spurious structure is scarce, small, and stands out 

in a comparison against the best available estimate of the 

total DOS (Figure 9); and (4) that these are smooth curves, 

not histograms with either low resolution or large 

fluctuations. 

The orbital densities of states presented here make 

plain the covalent nature of the chemical bonding in the 

tungsten bronzes. In the valence band, particularly in its 

lower half, the W5d orbitals mix strongly with the 02p, while 

in the conduction band, the 02p orbitals mix appreciably with 

the W5d. The predominance of p and d character on all the 

atomic sites leads to a very nonspherical distribution of 

the valence electron charge density about each of them, and 

suggests the importance of directional bonding in NaWOg, 

especially between ¥ and 0. The Na contribution to the 

conduction band DOS is found to be negligible, a result 

which is consistent with nuclear resonance measurements (33, 

58-60), XPS core-level line-shape analysis (103), observation 

of de Haas-van Alphen oscillations in the analogous compound 

Nag g^MoOg (110,10), and observation of Na^WO^ transport 

properties at high x values like those of the isoelectronic 

compound ReO^. The presence of Na contributions everywhere 

in the valence bands suggests that it is through these states 
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that Na affects chemical bonding and produces crystallographlc 

changes (24,35) with changes of Its concentration. 

The difference mentioned earlier between the photo-

emlsslon spectrum and the density of states of Na WO, has 
X 3 

also been of concern in the study of ReO^ (ill). This 

difference In the ReOg results has been Interpreted as due 

to a very small contribution to the photoemlsslon spectrum 

made by the 02p electrons. Gratifying agreement was obtained 

by comparing the XPS data with Just the Re5d contribution. 

The data also suggested a surprisingly large value for the 

ratio of the 5d and 2p photoelectron cross sections. By 

contrast, a comparison of the Na WO, photoemlsslon results 
X J 

for the valence band with just the W5d contribution presented 

in Figure 19 provides no better agreement than does compari­

son with the total DOS. Furthermore, the NaWO^ results 

suggest a smaller cross section ratio. The W5d contribution 

alone, however, does provide much better relative magnitudes 

for the valence and conduction bands of the XPS data than 

does the total DOS. 
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